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Anisotropy effect on two-dimensional cellular-automaton traffic flow with periodic and open
boundaries
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~Received 22 January 2003; published 26 August 2003!

Using computer simulations we investigate, in a version of the Biham-Middleton-Levine model with random
sequential update on a square lattice, the anisotropy effect of the probabilities of the change of the motion
directions of cars, from up to right (pur) and from right to up (pru), on the dynamical jamming transition and
velocities under periodic boundaries on one hand and the phase diagram under open boundaries on the other
hand. However, in the former case, the sharp jamming transition appears only forpur505pru50 ~i.e., when
the cars alter their motion directions!. In the open boundary conditions, it is found that the first-order line
transition between jamming and moving phases is curved. Hence, by increasing the anisotropy, the moving
phase region expands as well as the contraction of the jamming and maximal current phases takes place.
Moreover, in the anisotropic case, the transition between the jamming phase~or moving phase! and the
maximal current phase is of second order while in the isotropic case, and when each car changes its direction
of motion at every time step (pru5pur51), the transition is of first order. Furthermore, in the maximal current
phase, the density profile decays with an exponentg' 1
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I. INTRODUCTION

Transport phenomena in complex systems, in particu
models of highway traffic flow, have attracted much attent
in recent years. Much of the effort was concentrated on
crete stochastic models of traffic flow, first proposed by N
gel and Schreckenberg@1#, and subsequently studied b
many other authors using a variety of techniques@2–5#.
Since the introduction of the Nagel-Schreckenberg~NS!
model @1#, cellular automata became a well establish
method of traffic-flow modeling. Comparatively low comp
tational cost of cellular-automata models made it possible
conduct large-scale real-time simulations of urban traffic
the city of Duisburg@6# and the Dallas–Forth Worth comple
@7#. Compared with the fluid dynamical approaches
traffic-flow problems, the CA models are conceptually si
pler, and can be readily implemented on computers. Th
models have the advantages that they can be easily mod
to deal with the effects of different kinds of realistic cond
tions, such as road blocks and hindrances, traffic accid
@8#, highway junctions@9#, vehicle acceleration@10#, sto-
chastic delay due to drivers’ reactions@5#, anisotropy of car
distributions in different driving directions@11#, faulty traffic
lights @12#. Traffic flow is a kind of many body systems o
strongly interacting cars. Recent studies reveal physical p
nomena such as the dynamical phase transitions and no
ear waves@13,14#. When the car density increases, the ja
ming transition occurs and traffic jams appear. The jamm
transitions from the freely moving phase to the jammi
phase have been studied by microscopic and macrosc
models. The two-dimensional traffic flow is more compl
than the one-dimensional case. It has been investigated
by the cellular-automaton models@15–18#.
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The NS model@1# is a probabilistic CA model for one
dimensional highway traffic. It considered the effects of a
celeration and stochastic delay of vehicles. A vehicle c
move at mostvmax sites in a time step, wherevmax is the
maximal velocity. Cheybaniet al. @19# introduced a con-
straint during the entry of a vehicle, where at sitei 50 ~i.e.,
out of the system!, a vehicle with the velocityv5vmax cre-
ated with the probabilitya can immediately move accordin
to the NS rules@1#. Recently@20# we have studied the effec
of boundaries on the NS model, in which we have a vehi
that can enter without constraint, with a probabilitya, in the
first site being on the left side of the road if this site is emp
while a vehicle being on the right in the last site can lea
the road with a probabilityb. There is a free flow and jam
ming phase separated by a line of first-order transitions;
transition occurs ata,b for pÞ0 anda5b for p50, and
the maximal current phase is obtained only forvmax51 ~this
case coincides with the asymmetric exclusion proc
model!, otherwise it vanishes.

The two-dimensional models have been presented by
ham, Middleton, and Levine~BML ! to mimic the traffic flow
in the whole city. The BML model@15# is a simple two-
dimensional~square lattice! CA model. Each cell of the lat-
tice represents an intersection of an east-bound and a n
bound street. The cells~intersections! can either be empty o
occupied by a vehicle moving to the east or to the north.
order to enable movement in two different directions, ea
bound vehicles are updated at every odd discrete time
whereas north-bound vehicles are updated at every even
step. The velocity update of the cars is realized following
ASEP rules; a vehicle moves forward by one cell if the c
in front of it is empty, otherwise the vehicle does not mov
This is an alternating movement to a traffic light cycle of o
time step. The traffic-flow model is given by a three-state C
on the square lattice. Biham, Middleton, and Levine ha
studied the traffic-flow problem only in the caserx5ry
©2003 The American Physical Society29-1
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5r/2, whererx andry are, respectively, the density of ca
moving to the right and the density of cars moving upwar
and r is the total density of cars. They have found tha
jamming transition occurs at a critical densityr5rc with
increasing density of cars. The jamming transition separ
between the low density~moving! phase and the high densit
~jamming! phase. Nagatani@16# has investigated the aniso
ropy effect of the density of cars on BML models; it wa
shown that the traffic-jam transition occurs at higher den
of cars with increasing difference between the density
right-moving cars and the density of up-moving cars. T
difference of the densities of cars has an important effec
the jamming transition.

Our aim in this paper is to study, in a version of th
Biham-Middleton-Levine model with random sequential u
date on a square lattice, the effect of the anisotropy of
probabilities of the change of the motion directions of ca
from up to right (pur) and from right to up (pru), on the
jamming transition and velocities under the periodic bou
ary conditions on one hand and the phase diagram and
sity profile behavior under the open boundary conditions
the other hand. Hence, in addition to the open bounda
effect, in the model we study the trend of the motion of ea
car at a time that step depends on its direction of motion
the previous time; such conditions have not been consid
in Ref. @21# in which the authors have introduced, in a tw
dimensional traffic-flow model with parallel dynamics u
date and periodic boundaries, a randomness parameteg,
which allows one to control the trend of the motion of eve
car at a time step independently on its direction of motion
the previous time. However, in our case, the sharp jamm
transition~from freely moving to jamming phases, i.e., fro
high to low velocity values! appears only forpur505pru
50. Such transition has been obtained by Cuestaet al. @21#
but for any values ofgÞ0.5. In the open boundary cond
tions, the topology of phase diagram depends strongly on
anisotropy (upru2puru). However, the first-order line trans
tion between jamming and moving phases is curved. He
by increasing the anisotropy, the moving phase region
pands as well as the contraction of the jamming and maxi
current phases takes place. Moreover, the transition betw
the jamming phase~or moving phase! and the maximal cur-
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rent phase is of second order in the anisotropic case, whil
the isotropic case, and whenpru5pur51, this transition is
of first order. The paper is organized as follows: in the f
lowing section we define the model, Sec. III is reserved
results and discussions, the conclusion is given in Sec. I

II. MODEL

We consider the BML model on a square lattice ofL3L
sites with three-state CA, in both periodic and open bou
aries cases. Each site (i , j ) of the lattice, with 1< i<L and
1< j <L, contains either a car moving upwards, a car mo
ing to the right, or empty. At the initial configuration, cars a
randomly distributed on the sites of the lattice. Hence,
each time step, the cars are randomly selected within seq
tial dynamics, if the selected car is in right-moving~up-
moving! state, it moves to the right~up! unless the adjacen
site on its right~upwards! hand side is occupied by anothe
car, which can be either an up or a right driver. If it
blocked by another car it does not move. After that, if t
selected car is in the right-moving~up-moving! state, its state
is altered into the up-moving~right-moving! state with the
probability pru (pur). Then, we perform computer simula
tions of the CA model starting with a set of random initi
conditions for the system sizeL510–500, the densityr
50.0–1.0 of cars. Each run is obtained after 10 000–50
time steps. After a transient period that depends on the
tem size, on the random initial configuration, and the den
of car, the system reaches its asymptotic state. In orde
compute the average of any parameteru (^u&), the values of
u(t) obtained in the asymptotic state are averaged.

We denotet( i , j ) the state of the site (i , j ). The periodic
boundaries case is defined by the following conditions
1< i<L:

t~ i ,0!5t~ i ,L ! andt~ i ,L11!5t~ i ,1!,

and for 1< j <L:

t~0,j !5t~L, j ! andt~L11,j !5t~1,j !.

For the open boundaries case, at each time step, if the
( i ,1) @1< i<L# is empty then a right-moving car is injecte
-
s
-

FIG. 1. The variation of the global mean ve
locity ^vg& versus the density for different value
of the lattice sizeL in the case of periodic bound
aries.
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FIG. 2. The variation, in the periodic bound
aries case, of the global mean velocity^vg& ver-
sus the density for several values ofp5pur

5pru with L5100.
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with the probabilitya, while an up-moving car is injected
with the probabilitya if the site (1,j ) @1< j <L# is empty.
However, if an up-moving@right-moving# car reaches one o
the sites located in the upper@right# part of the lattice, i.e.,
the sites (L, j ) @( i ,L)# with 1< j <L @1< i<L#, it leaves the
lattice with the probabilityb.

In the following section, we have used the quantitiesvu ,
v r , andvg defined, respectively, as the mean up velocity,
mean right velocity, and the mean velocity. In the perio
boundaries condition,vu (v r) is the number of moves per
formed by the up-moving~right-moving! cars calculated in
each time step averaged over the up-moving~right-moving!
cars. The same procedure is carried out in order to com
vg except that we average over all cars. In the open bou
aries condition, the quantities are calculated inside the sq
of length 2l 11 (l 56) centered in the middle of the lattic
@i.e., ((L11)/2,(L11)/2)]. We define the quantitiesdu , dr ,
andd ( j u , j r , and j ) as the density~current! at the middle of
the lattice of, respectively, the up-moving cars, right-movi
cars, and all types of cars. The currentsj u and j r at the site
( i , j ) are defined, respectively, bŷu( i , j )@12g( i 11,j )#& l
and^r ( i , j )@12g( i , j 11)#& l , where^ & l is the average ove
the square (2l 11)2, while the global current is the summa
tion of both the currents,j 5 j u1 j r . The parametersu( i , j ),
02612
e

te
d-
re

r ( i , j ), andg( i , j ) are defined as the probability to find th
site (i , j ) occupied, respectively, by the up-moving car, righ
moving car, and any type of cars. Hereafter, we use the
lowing quantities,ru5^du&, r r5^dr&, andr5^d&.

III. SIMULATIONS AND RESULTS

A. Periodic boundaries

The variation of the global mean velocity as a function
the density, forp5pur5pru50, is given in Fig. 1 for dif-
ferent system sizes. It is clear that the system exhibits
different asymptotic states separated by a sharp jamm
transition~discontinuity of the average velocity at the trans
tion between the free moving and the jamming phases!. Such
transition has been obtained by Cuestaet al. @21# but for any
values ofgÞ0.5. Before the transition, all cars move free
and the average velocity iŝvg&51, while when the transi-
tion occurs, they are all stuck and^vg&50. In the jamming
state, the system reaches the asymptotic state formed
separate rows of right and up cars along the diagonals f
the upper-left to the lower-right corners, and this situati
prevents the cars to move. As the system size increases
critical densityrc tends to decrease giving rise to sharp
jamming transition, and stabilize for high system sizesL
>300).
-
es
FIG. 3. The variation, in the periodic bound
aries case, of the global, right, and up velociti
as a function ofpur for pru50.5, r50.7, andL
5100.
9-3
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FIG. 4. Phase diagram in the (a,b) plane for
several values ofp; solid ~dashed! lines corre-
sponds to first-order~second-order! transition.
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In the isotropic case, i.e.,p5pur5pru (pÞ0), Fig. 2
shows the variation of̂vg&5^v r&5^vu& as a function of the
density for different values ofp. In thep51 case, the system
undergoes a continuous transition from the freely mov
phase to the jamming phase atr50.34. Indeed, for low den-
sity (r<0.34) the mean velocity is equal to 1~freely moving
phase!, while for r>0.34, the mean velocity decreases~jam-
ming phase! almost linearly with increasing density. For
,p,1, such transitions disappear~one cannot distinguish
between freely moving and jamming phases! contrary to the
result of Ref.@21# in which the continuous transition exis
only at g50.5, otherwise the sharp jamming transition o
curs. This disagreement means that the model we stud
completely different than the one studied by Cuestaet al.
@21#. Indeed, in our model the direction of the motion of ca
at each time step depends on its direction of motion at
previous time; such a condition has not been considere
Ref. @21#. In order to understand the variation of the velo
ties versus the anisotropy for fixed density, one has to inv
tigate the behavior of the mean velocities versuspur and
pru . For the symmetry of the system, it suffices to study
variations ^v r& and ^vu& as a function ofpur instead of
studying them versus both parameters. However, the va
02612
g

-
is

e
in

s-

e

a-

tion of the global, right, and up velocities as a function ofpur

for pru50.5 andr50.7 is given in Fig. 3. It is shown that
for pur,pru (pur.pru), the number of up-moving~right-
moving! cars is more important than the number of righ
moving ~up-moving! cars, therefore the value of the mea
global velocity tends to the right~up! velocity. For pur

5pru , the velocities are equal.

B. Open boundaries

In this case, the system exhibits three phases; mov
jamming, and maximal current phases@22–26#. These phases
are governed by three factors: the flow of entering of ca
the flow of exiting the system, and the velocity of cars insi
the network. In the isotropic case (p5pur5pru), the veloci-
ties increase withp, so the maximal current phase region
contracted to high values of the injecting ratea and the
extracting rateb ~Fig. 4!. In the moving phase, for suffi
ciently small values ofa the densityr does not depend upo
the values ofp, while at higher values ofa the density in-
creases with decreasingp ~Fig. 5!, and contrary to the case o
the jamming phase, the density increases with increas
value of p. In fact, for small values ofp, the formation of
FIG. 5. The variation of the densityr as a
function of a for different values ofp with b
50.4 andL5101.
9-4
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FIG. 6. Schematic configuration of the syste
in the isotropic case forb50.4, a50.148, and
p50.5. The up-moving cars are indicated by th
vertical bar and the right-moving cars by the ho
zontal bar;L560.
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small traffic-jam clusters blocks the cars inside the latti
while at very low density such clusters disappear and the
move freely even at very low values ofp. Like in the asym-
metric exclusion model~ASEP! @22–26#, at the moving
phase close to the jamming transition, the system is divi
into two regions, namely, the high density region at the e
of the system, in our case this region is located at the vicin
of the upper-right exit~Fig. 6!, and the low density region
elsewhere. For low values ofp, the system is blocked rapidl
with the formation of local traffic-jam clusters, hence t
density inside the high density region decreases. Howe
with increasingp, the traffic-jam clusters are unblocked an
the empty sites located between these clusters become o
pied, and then the density increases inside this region. Th
fore, the area~density! of the high density region increase
~decreases! with decreasingp. Like in the ASEP model, the
transition between the moving and jamming phases oc
when the high density region invades the lattice. The tra
tion between the jamming and the moving phases is a fi
order transition~the density is discontinuous at the tran
tion!, while the transition between the moving pha
~jamming phase! and the maximal current phase is of seco
order ~the density is continuous at the transition!, except in
the casep51, for which the transitions are of first orde
However, the first-order transition occurs ata,b, which
means that the system reaches its jamming state at low
sities because of the mutual blockage of cars moving in
ferent directions. Moreover, the line transition is curve
Such a curvature is related to the dimension effect. Suc
result is also obtained in the one-dimensional NS model w
open boundaries but in the casevmax.1 @19#. In fact, in both
the cases the car has several possibilities of move. Indee
the NS model it hasvmax choices, while in our case the ca
could move either right or upwards. In contrast with the tra
sition from moving to jamming phases, the transition b
tween the moving phase and the maximal current ph
arises without the formation of a high density region in t
exit of the system, while the density inside the lattice
creases monotonically. In the casep51, and in the absenc
02612
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of the clusters in the lattice, the increase of the density is
relevant at the vicinity of the transition, and since the dens
in the maximal current phase is sufficiently large because
the great number of occupied sites, the intersection betw
these two situations at the transition reflects an unstable e
librium state which leads to a first-order transition.

The study of the anisotropic case, i.e.,purÞpru , is sum-
marized in Fig. 7~a! for pru50.1 and Fig. 7~b! for pru51. It
is found that the topology of the phase diagram in the (a,b)
plane is similar to the one obtained in the isotropic case~Fig.
5! ~i.e., the system presents three different phases: mov
jamming, and maximal current phases. However, the beh
ior of the density as a function ofb (a) shows that the
first-order transitions between jamming phase~moving
phase! and maximal current appear only forpru5pur5p
51 @Fig. 7~b!#, otherwise these transitions are of second
der. In the casepur.pru (pur,pru), the up-moving~right-
moving! cars entering on the bottom~left! of the lattice
change their direction at the vicinity of the entry to becom
right-moving ~up-moving! cars. Hence the move of cars
carried out at the vicinity of the bottom~left! entry in the
right ~up! direction as well aspur (pru) is larger thanpru
(pur). This augmentation of the density at the entrance p
vents other cars to enter, which leads to an important di
nution of the density inside the lattice at the moving pha
Then the transition occurs at a high critical valueac . It is
clear that the region of the maximal current phase in
(a,b) phase diagram@Figs. 7~a,b!# shrinks with increasing
anisotropy~i.e., upru2puru). In fact, the increase of the an
isotropy leads to the formation of a condensate band in
entering side which prevents the cars to enter the lattice.
we have to increasea ~for a fixed value ofb) to overcome
the traffic jam in the entrance, and then the transition l
between the moving phase and the maximal current is shi
to the high value ofa; while at the jamming phase, one mu
increaseb ~for a fixed value ofa) in order to increase the
traffic flow in the lattice, before reaching the maximal cu
rent phase. Then the line transition between jamming
9-5
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FIG. 7. Phase diagram in the (a,b) plane for
several values ofpur ; ~a! pru50.1, ~b! pru51.
Dashed lines correspond to second-order tran
tion, while solid lines correspond to first orde
transition.
e
t

s.
lity
the
maximal current phases is shifted to a higher value ofb.
Moreover, the density profile in the horizontal (i 5L/2,j

51,L) and vertical (j 5L/2,i 51,L) middle lines or in the
oblique line from the left-bottom corner to right-upper corn
decays in the maximal current phase with an exponeng
02612
r

'0.25 ~Fig. 8!, both in the anisotropic and isotropic case
This means that the model belongs to another universa
class than the models studied in one dimension, such as
ASEP (g5 1

2 ) @22,23# and the NS model forvmax.1 (g
' 2

3 ) @19#.
,
FIG. 8. The variation of the density profile
~a! r(L/2,i ) versusi ~the horizontal middle line!
and ~b! r( i ,i ) versusi ~the oblique line! at the
maximal current phase forL5500.
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IV. CONCLUSION

In this paper, we have studied, in a version of the Biha
Middleton-Levine model of two-dimensional traffic flow
with random sequential update, the anisotropy effect of
change of the directions of move, in the periodic and op
boundaries conditions, in which the direction of motion
cars at each time step depends on its direction of motio
the previous time step; such a condition has not been con
ered in the model studied, in the periodic boundaries,
Cuestaet al. @21#. We have shown, in the periodic boun
aries conditions, that the sharp jamming transition disapp
when the cars could change their direction of motion at ev
time step~i.e., the sharp jamming transition exists only in t
casep5pur5pru50. In the open boundaries case, the s
Ito
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tem exhibits three phases, namely, moving phase, jamm
phase, and maximal current phase. However, we have sh
that the first-order line transition between the moving and
jamming phases is curved which takes place ata,b. Fur-
thermore, we have shown that the increase of the anisotr
disfavors the maximal current and the jamming phas
Moreover, in the anisotropic case, the transition between
jamming phase~or moving phase! and the maximal curren
phase is of second order while in the isotropic case,
when each car changes its direction of motion at every t
step (pru5pur51), the transition is of first order. Finally
we have shown that the density profile in the horizontal~or
vertical! middle line decays in the maximal current pha
with an exponentg' 1

4 , both in the anisotropic and isotropi
cases.
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